Respuesta :
The volume of a sphere is [tex] \frac{4}{3} \pi r^3 [/tex].
Therefore, the larger balloon has a volume of [tex] \frac{4}{3} \pi (5^{3})=\frac{500}{3}\pi[/tex], while the smaller one has a volume of [tex] \frac{4}{3} \pi (3^{3}) = 36\pi[/tex].
Therefore the difference will be: [tex]\frac{500}{3}\pi-36\pi=\frac{392}{3}\pi[/tex]
Using [tex]\pi=3.14[/tex], the volume is 410.3 cubic feet.
Therefore, the larger balloon has a volume of [tex] \frac{4}{3} \pi (5^{3})=\frac{500}{3}\pi[/tex], while the smaller one has a volume of [tex] \frac{4}{3} \pi (3^{3}) = 36\pi[/tex].
Therefore the difference will be: [tex]\frac{500}{3}\pi-36\pi=\frac{392}{3}\pi[/tex]
Using [tex]\pi=3.14[/tex], the volume is 410.3 cubic feet.