Respuesta :

Use the quadratic formula to find the solutions:−b±b2−4(ac)2a-b±b2-4(ac)2a       Substitute the values:
a=−1a=-1,   b=0b=0,   and c=40c=40  into the quadratic formula and solve for x                 02−4⋅(−1⋅40)2⋅−102-4⋅(-1⋅40)2⋅-1 Simplify:
x=±2√10x=±210    The result can be shown in both exact and approximate form: x=±2√10x=±210x≈6.324555,−6.324555
I hope this helps. :)

Answer:

The answer is approximately ±6.32

Step-by-step explanation:

Given the quadratic equation 40-x² = 0, to get the solution to the quadratic equation, we must find all the values of x that satisfies the equation.

From the equation 40-x²= 0

Step1: Take -x² to the other side of the equation to have;

40= 0+x²

40= x²

Step 2: Take the square root of both sides to have;

√40 = √x²

x = ±√40

x = ±6.32

The values of x are approximately 6.32 and -6.32