(03.01 lc) the leg of a right triangle is 2 units and the hypotenuse is 3 units. What is the length, in units of the other leg of the triangle

Respuesta :

hypotenuse^2 = leg1^2 + leg2^2
3^2 = 2^2 + leg2^2
leg2^2 = 3^2 -2^2
leg2^2 =9 -4
leg2^2 = 5
leg2 = square root (5)



For this case, the first thing we should do is use the Pythagorean theorem.
 We have then:
 [tex]c ^ 2 = a ^ 2 + b ^ 2 [/tex]
 Where,
 a, b: sides of the rectangle triangle
 c: hypotenuse
 Substituting values we have:
 [tex] 3 ^ 2 = 2 ^ 2 + b ^ 2 [/tex]
 Clearing b we have:
 [tex]b ^ 2 = 3 ^ 2 - 2 ^ 2 [/tex]
 [tex]b = \sqrt{3^2 - 2^2} [/tex]
 [tex]b = \sqrt{9-4} [/tex]
 [tex]b = \sqrt{5} [/tex]
 Answer:
 The length, in units of the other leg of the triangle is:
 [tex]b = \sqrt{5} [/tex]