Respuesta :
hypotenuse^2 = leg1^2 + leg2^2
3^2 = 2^2 + leg2^2
leg2^2 = 3^2 -2^2
leg2^2 =9 -4
leg2^2 = 5
leg2 = square root (5)
3^2 = 2^2 + leg2^2
leg2^2 = 3^2 -2^2
leg2^2 =9 -4
leg2^2 = 5
leg2 = square root (5)
For this case, the first thing we should do is use the Pythagorean theorem.
We have then:
[tex]c ^ 2 = a ^ 2 + b ^ 2 [/tex]
Where,
a, b: sides of the rectangle triangle
c: hypotenuse
Substituting values we have:
[tex] 3 ^ 2 = 2 ^ 2 + b ^ 2 [/tex]
Clearing b we have:
[tex]b ^ 2 = 3 ^ 2 - 2 ^ 2 [/tex]
[tex]b = \sqrt{3^2 - 2^2} [/tex]
[tex]b = \sqrt{9-4} [/tex]
[tex]b = \sqrt{5} [/tex]
Answer:
The length, in units of the other leg of the triangle is:
[tex]b = \sqrt{5} [/tex]
We have then:
[tex]c ^ 2 = a ^ 2 + b ^ 2 [/tex]
Where,
a, b: sides of the rectangle triangle
c: hypotenuse
Substituting values we have:
[tex] 3 ^ 2 = 2 ^ 2 + b ^ 2 [/tex]
Clearing b we have:
[tex]b ^ 2 = 3 ^ 2 - 2 ^ 2 [/tex]
[tex]b = \sqrt{3^2 - 2^2} [/tex]
[tex]b = \sqrt{9-4} [/tex]
[tex]b = \sqrt{5} [/tex]
Answer:
The length, in units of the other leg of the triangle is:
[tex]b = \sqrt{5} [/tex]