Respuesta :
[tex]10x^2y^{-2}[/tex]
Substitute the values of x = -1 and y = -2 to the expression:
[tex]10\cdot(-1)^2\cdoy(-2)^{-2}=10\cdot1\cdot\dfrac{1}{(-2)^2}=10\cdot\dfrac{1}{4}=\dfrac{10}{4}=2.5[/tex]
Used:[tex]a^{-n}=\dfrac{1}{a^n}[/tex]
Substitute the values of x = -1 and y = -2 to the expression:
[tex]10\cdot(-1)^2\cdoy(-2)^{-2}=10\cdot1\cdot\dfrac{1}{(-2)^2}=10\cdot\dfrac{1}{4}=\dfrac{10}{4}=2.5[/tex]
Used:[tex]a^{-n}=\dfrac{1}{a^n}[/tex]
Answer:
Substituting the values of x and y will give 38
Step-by-step explanation:
The question seeks to test our understanding of Substitution
Given the expression
10x2y–2 for x = –1 and y = –2.
Substituting for the value of x and y into the expression
We are given x=-1
y=-2
Substituting and equating to zero we have
10(-1)2(-2)-2=0
Opening up The bracket we have
(-10)(-4)-2=0
40-2=0
38=0
The emerging answer is 38