Respuesta :
For this case we have the following polynomial:
[tex]3x^2 - 3x + 1[/tex]
Applying the formula of the resolvent we have:
[tex]x=\frac{-b+/-\sqrt{b^2-4ac}}{2a}[/tex]
Substituting values we have:
[tex]x=\frac{-(-3)+/-\sqrt{(-3)^2-4(3)(1)}}{2(3)}[/tex]
Rewriting we have:
[tex]x=\frac{3+/-\sqrt{9-12}}{6}[/tex]
[tex]x=\frac{3+/-\sqrt{-3}}{6}[/tex]
[tex]x=\frac{3+/-i\sqrt{3}}{6}[/tex]
Therefore, the roots of the polynomial are given by:
[tex]x=\frac{3+i\sqrt{3}}{6}[/tex]
[tex]x=\frac{3-i\sqrt{3}}{6}[/tex]
Answer:
The values of x that are roots of the polynomial are:
[tex]x=\frac{3+i\sqrt{3}}{6}[/tex]
[tex]x=\frac{3-i\sqrt{3}}{6}[/tex]
The roots of a polynomial are where the polynomial equals zero
3x² − 3x + 1 = 0
∴ 3x² − 3x = -1
∴ x² − x = -1/3
∴ x² − x + (-1/2)² = (-1/2)² − 1/3
given x² + bx + (b/2)² = (x + b/2)²
∴ (x − 1/2)² = 1/4 − 1/3
∴ (x − 1/2)² = 3/12 − 4/12
∴ (x − 1/2)² = -1/12
∴ x − 1/2 = ±√(-1/12)
This tells us there are no real roots and if you need real number solutions we stop here
∴ x − 1/2 = ±i/(2√3)
∴ x − 1/2 = ±i√(3)/6
∴ x = 1/2 ± i√(3)/6
∴ x = 3/6 ± i√(3)/6
∴ x = (3 − i√3)/6 and (3 + i√3)/6 <= the 2 complex roots