Respuesta :

Move all the logarithms on the left hand side, and all the constants on the other:

[tex] \log_2(x-2) - \log_2(x) = -1 [/tex]

Use the rule of logarithms

[tex] \log_a(b) - \log_a(c) = \log_a\left(\dfrac{b}{c}\right) [/tex]

To rewrite the equation as

[tex] \log_2\left(\dfrac{x-2}{x}\right) = -1 [/tex]

Evaluate 2 to the power of each side:

[tex] \dfrac{x-2}{x} = 2^{-1} = \dfrac{1}{2} [/tex]

Multiply both sides by 2x:

[tex] 2(x-2) = x \iff 2x-4 = x \iff x = 4 [/tex]

1 + log₂(x - 2) = log₂(x)

1 = log₂(x) - log₂(x - 2)

1 = log₂[tex]\frac{x}{x - 2}[/tex]

2¹ = [tex]\frac{x}{x - 2}[/tex]

2(x - 2) = x

2x - 4 = x

    -4 = -x

     4 = x

Answer: 4