ashbs03
contestada

99 Points.

Find the product of the sum of two perfect cubes.

Find the product of the difference of two perfect cubes.

(b^2 + 8 )(b^2 - 8)



Respuesta :

The product of the sum of two perfect cubes:

a³ + b³ = (a + b)(a² - ab + b²)

The product of the difference of two perfect cubes:

a³ - b³ = (a - b)(a² + ab + b²)

----------------------------------------------------------------------------------------------------------------

Remember to follow FOIL:

(b^2 + 8)(b^2 - 8)

(b^2)(b^2) = b^4

(b^2)(-8) = -8b^2

(8)(b^2) = 8b^2

(8)(-8) = -64

b^4 - 8b^2 + 8b^2 - 64

Combine like terms:

b^4 (-8b^2 + 8b^2) - 64

b^4 - 64

b^4 - 64 is your answer

hope this helps

The product of the sum of two perfect cubes:

a³ + b³ = (a + b)(a² - ab + b²)

The product of the difference of two perfect cubes:

a³ - b³ = (a - b)(a² + ab + b²)

----------------------------------------------------------------------------------------------------------------

Remember to follow FOIL:

(b^2 + 8)(b^2 - 8)

(b^2)(b^2) = b^4

(b^2)(-8) = -8b^2

(8)(b^2) = 8b^2

(8)(-8) = -64

b^4 - 8b^2 + 8b^2 - 64

Combine like terms:

b^4 (-8b^2 + 8b^2) - 64

b^4 - 64

b^4 - 64 is your answer