Respuesta :

To find [tex]f^{-1} (x)[/tex], you can switch the x and the y(which is f(x)).

So instead of [tex]f(x)=\frac{-7}{4x-5}[/tex], it will be:

[tex]x = \frac{-7}{4y-5}[/tex]

Now you need to find "y".

You first multiply (4y - 5) on both sides

[tex]x(4y - 5) = -7[/tex]

Next divide "x" on both sides

[tex]4y - 5 = \frac{-7}{x}[/tex]

Add 5 on both sides

[tex]4y = \frac{-7}{x} +5[/tex]

Divide 4 on both sides to get "y" by itself

[tex]y = \frac{7}{4x} +\frac{5}{4}[/tex]


[tex]f^{-1} = \frac{7}{4x} +\frac{5 }{4}[/tex]