Respuesta :
Answer:
Length = 12 feet, Width = 10 feet
Step-by-step explanation:
Let the length of the bedroom be 'x' ft and the width of the bedroom be 'y' ft.
We know that the perimeter of a rectangle is given by,
[tex]P=2(\text {length}+\text {width})[/tex]
[tex]P=2(x+y)[/tex]
It is given that, the length of the bedroom is 2 more than the width, so,
[tex]x=y+2[/tex]
Putting the values in the equation of perimeter we get,
[tex]44=2((y+2)+y)[/tex]
[tex]44=2(2y+2)[/tex]
[tex]\frac{44}{2}=2y+2[/tex]
[tex]22=2y+2[/tex]
[tex]2y=22-2[/tex]
[tex]y=\frac{20}{2}=10[/tex]
Therefore, [tex]x=y+2=10+2=12[/tex]
Hence, the length of the bedroom is 12 feet and the width of the bedroom is 10 feet.