A recursive rule for a geometric sequence is a1=3;an=1/2an−1.

What is the explicit rule for this sequence?



Enter your answer in the box.

Respuesta :

gmany

A recursive rule for a geometric sequence:

[tex]a_1\\\\a_n=r\cdot a_{n-1}[/tex]

---------------------------------------------------

[tex]a_1=3\\\\a_n=\dfrac{1}{2}a_{n-1}\to \boxed{r=\dfrac{1}{2}}[/tex]

--------------------------------------------------

Exciplit rule:

[tex]a_n=a_1r^{n-1}[/tex]

Substitute:

[tex]a_n=3\left(\dfrac{1}{2}\right)^{n-1}=3\cdot\left(\dfrac{1}{2}\right)^n\cdot\left(\dfrac{1}{2}\right)^{-1}=3\cdot\left(\dfrac{1}{2}\right)^n\cdot2\\\\\boxed{a_n=6\cdot\left(\dfrac{1}{2}\right)^n}[/tex]

Answer:

The answer is: a_n = 6*(1/2)^n