Respuesta :

[tex]adj(x) = \frac{\sqrt{7}}{3}[/tex]

[tex]opp(y) = \frac{\sqrt{2}}{3}[/tex]

adj² + opp² = hyp²

[tex](\frac{\sqrt{7}}{3})^{2} +(\frac{\sqrt{2}}{3})^{2} = hyp^{2}[/tex]

[tex]\frac{7}{9} +\frac{2}{9} = hyp^{2}[/tex]

1 = hyp²

1 = hyp

sin = [tex]\frac{opp}{hyp} =\frac{\sqrt{2}}{3}[/tex]

cos = [tex]\frac{adj}{hyp} =\frac{\sqrt{7}}{3}[/tex]

tan = [tex]\frac{opp}{adj} =\frac{\sqrt{2}}{sqrt\{7}=\frac{\sqrt{14}}{7}}[/tex]

csc = [tex]\frac{hyp}{opp} =\frac{3}{sqrt\{2}=\frac{3\sqrt{2}}{2}}[/tex]

sec = [tex]\frac{hyp}{adj} =\frac{3}{sqrt\{7}=\frac{3\sqrt{7}}{7}}[/tex]

cot = [tex]\frac{adj}{opp} =\frac{\sqrt{7}}{sqrt\{2}=\frac{\sqrt{14}}{2}}[/tex]

****************************************************************

Answer: 8052

Step-by-step explanation:

[tex]A = Pe^{kt}[/tex]

[tex]5500 = 5000e^{k(3)}[/tex]

[tex]\frac{5500}{5000} = e^{3k}[/tex]

[tex]1.1 = e^{3k}[/tex]

[tex]ln1.1 = lne^{3k}[/tex]

ln1.1 = 3k

[tex]\frac{ln1.1}{3}=k[/tex]

0.03177 = k


[tex]A = Pe^{0.03177t}[/tex]

[tex]A = 5500e^{0.03177(12)}[/tex]

[tex]A = 5500e^{0.3812}[/tex]

[tex]A = 5500(1.4641)}[/tex]

A = 8052.55

****************************************************************

Answer: (2, 9)

Step-by-step explanation:

3x - 8y = -66   →   2(3x - 8y = -66)   →   6x - 16y = -132

2x - 7y = -59   →  -3(2x - 7y = -59)   →  -6x + 21y = 177

                                                                        5y = 45

                                                                          y  = 9

2x - 7y = -59

2x - 7(9) = -59

2x - 63 = -59

2x         = 4

x          = 2