Respuesta :

Answer: 118.40, 300, $18,000

Step-by-step explanation:

a) p(x) = [tex]-\frac{1}{5} (8) + 120[/tex]

   p(8) =  [tex]-\frac{8}{5} + 120[/tex]

          = -1.60 + 120

          = 118.40

b) R(x) = x * p(x)

         = [tex]x(-\frac{1}{5}x + 120)[/tex]

         = [tex]-\frac{1}{5}x^{2} + 120x[/tex]

           a=[tex]-\frac{1}{5}[/tex], b=120

x = [tex]\frac{-b}{2a}[/tex]

  = [tex]\frac{-120}{-\frac{2}{5}}[/tex]

  = [tex]\frac{-120(5)}{-2}[/tex]

  = 300

c)  R(x) = [tex]-\frac{1}{5}x^{2} + 120x[/tex]

R(300) = [tex]-\frac{1}{5}(300)^{2} + 120(300)[/tex]

           = -18,000 + 36,000

           = 18,000

***********************************************************************

sec θ = [tex]\sqrt{6}[/tex]

[tex]\frac{hypotenuse}{adjacent} = \frac{\sqrt{6}}{1}[/tex]

adjacent² + opposite² = hypotenuse²

      1²       + opposite² =      (√6)²

      1         + opposite² =        6

                   opposite² =        5

                   opposite =        √5

csc θ = [tex]\frac{hypotenuse}{opposite} = \frac{\sqrt{6}}{\sqrt{5}} = \frac{\sqrt{30}}{5}[/tex]

cot θ = [tex]\frac{adjacent}{opposite} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}[/tex]

sin θ = [tex]\frac{opposite}{hypotenuse} = \frac{\sqrt{5}}{\sqrt{6}} = \frac{\sqrt{30}}{6}[/tex]

cos θ = [tex]\frac{adjacent}{hypotenuse} = \frac{1}{\sqrt{6}} = \frac{\sqrt{6}}{6}[/tex]

tan θ = [tex]\frac{opposite}{adjacent} = \frac{\sqrt{5}}{1} = \sqrt{5}[/tex]

**********************************************************************

Answer: 144°

Step-by-step explanation:

[tex]\frac{\pi}{180}=\frac{4\pi}{5(x)}[/tex]

π(5x) = 180(4π)

    x   = [tex]\frac{180(4\pi)}{5\pi}[/tex]

         = 36(4)

         = 144