Answer:
10.3 °C
Step-by-step explanation:
This is an isolated system so
heat gained by ice + heat lost by water = 0
Heat to warm ice + heat to melt ice + heat to warm melt + heat lost by water = 0
q₁ + q₂ + q₃ + q₄ = 0
n₁C₁ΔT₁ + n₁ΔH_fus + n₁C₃ΔT₃ + n₄C₃ΔT₄ = 0
Step 1: Calculate q₁
n₁ = 40.0 g × 1/18.02
n₁ = 2.220 mol
C₁ = 37.7 J·K⁻¹mol⁻¹
ΔT₁ = T_f – T_i
ΔT₁ = 0.0 – (-15)
ΔT₁ = 15 °C = 15 K
q₁ = 2.220 × 37.7 × 15
q₁ = 1255 J
q₁ = 1.255 kJ
===============
Step 2. Calculate q₂
ΔH_fus = 6.01 kJ·mol⁻¹
q₂ = 2.220 × 6.01
q₂ = 13.34 kJ
===============
Step 3: Calculate q₃
C₃ = 75.3 J·K⁻¹mol⁻¹
ΔT₃ = T_f – T_i = x – 0 °C
ΔT₃ = x °C = x K
q₃ = 2.220 × 75.3 × x
q₃ = 167x J
q₃ = 0.167x kJ
===============
Step 4. Calculate q₄
n₄ = 265 × 1/18.02
n₄ = 14.71 mol
ΔT₄ = T_f – T_i = x – 25.0 °C
q₄ = 14.71 × 75.3 × (x – 25.0)
q₄ = 1107 × (x – 25.0)
q₄ = 1107x – 27 680 J
q₄ = 1.107x – 27.68 kJ
===============
Step 5. Solve for x
1.255 + 13.34 + 0.167x + 1.107x - 27.68 = 0
1.274x - 13.08 = 0
1.274x = 13.08
x = 13.08/1.274
x = 10.3 °C
The final temperature is -10.3 °C.