Solve 10e^2x - 5 =23^x for x.

[tex]10e^{2x}-5=23e^x\qquad\text{subtract}\ 23e^x\ \text{from both sides}\\\\10e^{2x}-23e^x-5=0\\\\10(e^x)^2-23(e^x)-5=0\\\\\text{substitution:}\ e^x=t > 0\\\\10t^2-23t-5=0\\\\10t^2-25t+2t-5=0\\\\5t(2t-5)+1(2t-5)=0\\\\(2t-5)(5t+1)=0\iff2t-5=0\ \vee\ 5t+1=0\\\\2t=5\ \vee\ 5t=-1\\\\t=\dfrac{5}{2} > 0\ \vee\ t=-\dfrac{1}{5} < 0\\\\\text{therefore}\ e^x=\dfrac{5}{2}\to\ln e^x=\ln\left(\dfrac{5}{2}\right)\\\\\boxed{x=\ln\left(\dfrac{5}{2}\right)}[/tex]