Respuesta :

Answer:

option B  9/13

Step-by-step explanation:

[tex]\frac{2x+7x}{13x}[/tex]

First we simplify the given expression

LEts combine like terms

2x+7x becomes 9x

So the expression becomes

[tex]\frac{9x}{13x}[/tex]

Now we have x at the top and bottom of the fraction

so we cancel it out

[tex]\frac{9}{13}[/tex]



aachen

Answer:

Option B is correct, i.e. limit L = 9/13

Step-by-step explanation:

Given the expression is (2n + 7n)/13n

Applying limits on it:-

[tex]\lim_{n \to \infty} \frac{2n+7n}{13n}\\=\lim_{n \to \infty} \frac{9n}{13n}\\=\lim_{n \to \infty} \frac{9}{13}\\=\frac{9}{13}[/tex]

So, the limit of the given expression is 9/13.

Hence, option B is correct, i.e. limit L = 9/13.