5 (Picture) CONVERGENT AND DIVERGENT SERIES PLEASE HELP!!

Yes, this series converges. We can check using the integral test; we have
[tex]\displaystyle\frac1{25}+\frac1{36}+\frac1{49}+\cdots=\sum_{n=5}^\infty\frac1{n^2}[/tex]
and
[tex]\displaystyle\sum_{n=5}^\infty\frac1{n^2}\le\int_5^\infty\frac{\mathrm dx}{x^2}=\frac15[/tex]
Answer:
Option A is correct.
True.
The series: [tex]\frac{1}{25}+\frac{1}{36} +\frac{1}{49} +....[/tex] is convergent
Step-by-step explanation:
Comparison Test:
Let [tex]0\leq a_n\leq b_n[/tex] for all n.
If [tex]\sum_{n=1}^{\infty} b_n[/tex] converges, then [tex]\sum_{n=1}^{\infty} a_n[/tex] converges.
If [tex]\sum_{n=1}^{\infty} b_n[/tex] diverges, then [tex]\sum_{n=1}^{\infty} a_n[/tex] diverges.
Given the series: [tex]\frac{1}{25}+\frac{1}{36} +\frac{1}{49} +....[/tex]
then;
[tex]a_n = \sum_{n=1}^{\infty}\frac{1}{(n+4)^2}[/tex]
[tex]\frac{1}{(n+4)^2} \leq \frac{1}{n^2}[/tex]
By comparison test:
[tex]b_n = \frac{1}{n^2}[/tex]
P-series test:
[tex]\sum_{n=1}^{\infty} \frac{1}{n^p}[/tex] where p> 0
If p>1 then the series converges and if 0<p< 1, then the series diverges.
By using p-test series in series [tex]b_n[/tex]
then;
[tex]b_n = \sum_{n=1}^{\infty} \frac{1}{n^2}[/tex] is a p-series, with p> 1, it converges.
Comparing the above series with [tex]b_n = \frac{1}{n^2}[/tex], we can conclude that [tex]a_n = \sum_{n=1}^{\infty}\frac{1}{(n+4)^2}[/tex] also converges and [tex]\frac{1}{(n+4)^2} \leq \frac{1}{n^2}[/tex]
Therefore, the given series is convergent.