Respuesta :

Answer:

1) The value of x= 0.0642

2) [tex]sin\theta=\frac{P}{H}=\frac{24}{25}[/tex]

[tex]cos\theta=\frac{B}{H}=\frac{7}{25}[/tex]

[tex]tan\theta=\frac{P}{B}=\frac{24}{7}[/tex]

[tex]cosec\theta=\frac{H}{P}=\frac{25}{24}[/tex]

[tex]cot\theta=\frac{B}{P}=\frac{7}{25}[/tex]

Step-by-step explanation:

1) Given : A right angle triangle with sides x and 10 and angle is 50°

To find : Value of x

Solution : Since, it is a right angle triangle

Therefore, we apply [tex]cos\theta=\frac{B}{H}[/tex]

Where Base = x, Hypotenuse= 10, angle = 50°

[tex]cos(50)=\frac{x}{10}[/tex]

[tex]0.642=\frac{x}{10}[/tex]

[tex]0.0642=x[/tex]

The value of x= 0.0642

2) Given : [tex]sec\theta=\frac{25}{7}[/tex]

To find : Value of [tex]sin\theta,cos\theta,tan\theta,cosec\theta,cot\theta[/tex]

Solution : We have given [tex]sec\theta=\frac{25}{7}[/tex]

[tex]sec\theta=\frac{H}{B}[/tex]

so, B= 7 , H=25

By Pythagoras theorem,

[tex]H^2=P^2+B^2[/tex]

[tex]25^2=P^2+7^2[/tex]

[tex]625-49=P^2[/tex]

[tex]\sqrt{576}=P^2[/tex]

[tex]P=24[/tex]

Now, P=24, B=7, H=25

[tex]sin\theta=\frac{P}{H}=\frac{24}{25}[/tex]

[tex]cos\theta=\frac{B}{H}=\frac{7}{25}[/tex]

[tex]tan\theta=\frac{P}{B}=\frac{24}{7}[/tex]

[tex]cosec\theta=\frac{H}{P}=\frac{25}{24}[/tex]

[tex]cot\theta=\frac{B}{P}=\frac{7}{25}[/tex]