The two triangles in the diagram are similar. There are two possible values of x. Work out each of these values. State both assumptions you make in your working.

The two triangles in the diagram are similar There are two possible values of x Work out each of these values State both assumptions you make in your working class=

Respuesta :

Answer:

By changing the order of vertices,

We have four conditions,

[tex]\triangle ABE\sim \triangle ACD[/tex]

[tex]\triangle ABE\sim \triangle ADC[/tex]

[tex]\triangle AEB\sim\triangle ACD[/tex]

[tex]\triangle AEB \sim \triangle ADC[/tex]

When we have [tex]\triangle ABE\sim \triangle ACD[/tex] or [tex]\triangle AEB \sim \triangle ADC[/tex],

Then by the property of similar angles,

[tex]\frac{AE}{AD}=\frac{AB}{AC}[/tex]

⇒ [tex]\frac{15}{18} = \frac{10}{10+x}[/tex]

⇒ [tex]150+15x= 180[/tex]

⇒ [tex]15x = 180 -150[/tex]

⇒ [tex]15x = 30[/tex]

⇒  x = 2

But,   [tex]\triangle ABE\sim \triangle ADC[/tex] or [tex]\triangle AEB\sim\triangle ACD[/tex] is given,

Then by the property of similar triangles,

[tex]\frac{AB}{AD}=\frac{AE}{AC}[/tex]

⇒ [tex]\frac{10}{18} = \frac{15}{10+x}[/tex]

⇒ [tex]100+10x= 15\times 18[/tex]

⇒ [tex]10x = 270 -100[/tex]

⇒ [tex]10x = 170[/tex]

⇒  x = 17

Note: [tex]\angle A[/tex] is reflexive angle in both triangles this is why, in each condition we took A is corresponding to A.