Respuesta :

Answer:

The solutions are: [tex]x=7[/tex] or [tex]x=-2[/tex].

Step-by-step explanation:

The given equation is [tex]x^2=5x+14[/tex]

We rewrite in the standard quadratic form to obtain;

[tex]x^2-5x-14=0[/tex]

We split the middle term with -7,2 because their product is -14 and their sum is -5.

[tex]x^2-7x+2x-14=0[/tex]

Factor by grouping;

[tex]x(x-7)+2(x-7)=0[/tex]

[tex](x-7)(x+2)=0[/tex]

Either [tex](x-7)=0[/tex] or [tex](x+2)=0[/tex].

Either [tex]x=7[/tex] or [tex]x=-2[/tex].