(1) Find MN to the nearest tenth
(2) In triangle TUV below, find m
Thanks!


Answer:
1. 64.0
2. 88°
Step-by-step explanation:
1. By the cosine rule,
[tex]MN^2=NL^2+ML^2-2ML\cdot NL\cdot \cos\angle L,\\ \\MN^2=36^+47^2-2\cdot 36\cdot 47\cdot \cos 100^{\circ},\\ \\MN^2=1296+2209-3384\cos100^{\circ}\approx 4092.625433,\\ \\MN\approx 63.97\approx 64.0.[/tex]
2. Use the cosine rule,
[tex]UV^2=UT^2+VT^2-2UT\cdot VT\cdot \angle T,\\ \\8.1^2=4.2^2+7.1^2-2\cdot 4.2\cdot 7.1\cdot \cos \angle T,\\ \\65.61=17.64+50.41-59.64\cos \angle T,\\ \\\cos \angle T=\dfrac{65.61-17.64-50.41}{-59.64}=\dfrac{2.44}{59.64}\approx 0.0409,\\ \\\angle T\approx 88^{\circ}.[/tex]
Answer:
(1) NM = 64
(2) m∠T = 87.7°
Step-by-step explanation:
(1) By using cos Rule
∵ (NM)² = (ML)² + (NL)² - 2(ML)(NL)cosL
∴ (NM)² = (47)² + (36)² - 2(47)(36)cos100
∴ (NM)² = 4092.625433
∴ NM = 63.97 ≅ 64
(2) By using cos Rule:
∵ [tex]cosT=\frac{(TU)^{2}+(TV)^{2}-(UV)^{2}}{2(TU)(TV)}[/tex]
∴ [tex]cosT=\frac{(4.2)^{2}+(7.1)^{2}-(8.1)^{2}}{2(4.2)(7.1)}=\frac{61}{1491}[/tex]
∴m∠T= [tex]cos^{-1}(\frac{61}{1491})=87.6552[/tex]
∴ m∠T = 87.7°