Respuesta :

ANSWER

[tex]y = 3 \cos(2x + 2) + 2[/tex]

or
[tex]y= -3\cos(2x + 2) + 2[/tex]

Any of these two are correct

EXPLANATION

The general cosine function is

[tex]y = a \cos(bx + c) + d[/tex]

where

[tex]|a|=3[/tex]

[tex]a=\pm3[/tex]

is the amplitude.

[tex] \frac{2\pi}{b}= \pi[/tex]

is the period.

This implies that

[tex]b=2[/tex]

[tex] \frac{b}{c} = 1[/tex]

is the phase shift.

This implies that;

[tex]c = 2[/tex]

[tex]d = 2[/tex]

is the vertical shift.

The possible equations are:

[tex]y = \pm \: 3 \cos(2x \pm2)+2[/tex]

Answer:

y = ±3 cos(2x+2)+2

Step-by-step explanation:

We have to find the cosine function.

GIVEN:

amplitude=3

period= π

phase shift = 1

vertical shift = 2

The general form of cosine function is:

y = acos (bx+c) +d

Where a is the amplitude, which is equal to IaI = 3

a= ±3

As period is :

[tex]\frac{2\pi }{b}=\pi[/tex]

b = 2

As phase shift:

[tex]\frac{b}{c}=1[/tex]

c=2

Vertical shift d= 2.

Put the value  of a,b,c,d in the general equation:

y = a cos (bx+c) +d

y = ±3 cos(2x+2)+2 is the required equation.