Exam for advanced algebra

Answer:
The correct answer is option 3
2log₅x - 2 log₅4
Step-by-step explanation:
Points to remember
1). logₐ(x/y) = logₐx - logₐy
2). logₐx² = 2logₐx
From the above we can write,
log₅(x/4)² = 2log₅(x/4)
= 2[log₅(x/4)] = 2[ log₅x - log₅4]
= 2log₅x -2 log₅4]
From the given expression we get the correct answer is option 3
2log₅x - 2 log₅4
Answer:
third option
Step-by-step explanation:
Using the laws of logarithms
• [tex]log_{b}[/tex]([tex]x^{n}[/tex]) ⇒ n [tex]log_{b}[/tex] x
• log ([tex]\frac{x}{y}[/tex]) ⇒ log x - log y
Hence
2 [tex]log_{5}[/tex]([tex]\frac{x}{4}[/tex])
= 2([tex]log_{5}[/tex] x - [tex]log_{5}[/tex] 4 )
= 2[tex]log_{5}[/tex] x - 2[tex]log_{5}[/tex] 4