Answer:
269.068 kJ/mol.
Explanation:
ln (k₂/k₁) = (Eₐ/R) [(T₂ - T₁)/(T₁T₂)].
k₁ = 6.20 x 10⁻⁴ min⁻¹, T₁ = 700.0 K.
To get k₂:
in first order reactions: k = 0.693/(half-life).
∴ k₂ = 0.693/(29.0 min) = 2.39 x 10⁻² min⁻¹, T₂ = 760.0 K.
∵ ln (k₂/k₁) = (Eₐ/R) [(T₂ - T₁)/(T₁T₂)]
∴ ln [(2.39 x 10⁻² min⁻¹)/(6.20 x 10⁻⁴ min⁻¹)] = (Eₐ/(8.314 J/mol.K)) [(760.0 K - 700.0 K) / (760.0 K)(700.0 K)].
3.65 = (Eₐ/(8.314 J/mol.K)) (1.128 x 10⁻⁴).
∴ Eₐ = (3.65)(8.314 J/mol.K) / (1.128 x 10⁻⁴) = 269.068 kJ/mol.