Respuesta :

Answer:

Apply the trigonometric identities:

[tex]cos\alpha-cos\beta=-2sin\frac{\alpha+\beta}{2}*sin\frac{\alpha-\beta}{2}[/tex]

[tex]sin\alpha+sin\beta=2sin\frac{\alpha+\beta}{2}*cos\frac{\alpha-\beta}{2}[/tex]

[tex]sin(-\alpha)=-sin(\alpha)\\cos(-\alpha)=cos(\alpha)[/tex]

[tex]\frac{sin\alpha}{cos\alpha}=tan\alpha[/tex]

Step-by-step explanation:

By definition you have:

[tex]cos\alpha-cos\beta=-2sin\frac{\alpha+\beta}{2}*sin\frac{\alpha-\beta}{2}[/tex]

[tex]sin\alpha+sin\beta=2sin\frac{\alpha+\beta}{2}*cos\frac{\alpha-\beta}{2}[/tex]

[tex]sin(-\alpha)=-sin(\alpha)\\cos(-\alpha)=cos(\alpha)[/tex]

[tex]\frac{sin\alpha}{cos\alpha}=tan\alpha[/tex]

 

 Keeping the above on mind, you can rewrite the expression as following:

[tex]=\frac{(-2sin\frac{x+3x}{2}*sin\frac{x-3x}{2})}{(2sin\frac{x+3x}{2}*cos\frac{x-3x}{2})}[/tex]

Simplify:

 [tex]=\frac{(-2sin\frac{4x}{2}*sin\frac{-2x}{2})}{(2sin\frac{4x}{2}*cos\frac{-2x}{2})}[/tex]

(You can cancel out the like terms)

[tex]=\frac{-(-sin\frac{2x}{2})}{cos\frac{-2x}{2}}\\=\frac{sinx}{cosx}\\\\=tanx[/tex]