Respuesta :

frika

Answer:

[tex]a_n=-2\cdot 9^{n-1}.[/tex]

Step-by-step explanation:

You are given that

  • [tex]a_1=-2;[/tex]
  • [tex]a_n=9a_{n-1}.[/tex]

Then

[tex]a_1=-2,\\ \\a_2=9a_1=9\cdot (-2)=-18,\\ \\a_3=9a_2=9\cdot (-18)=-162, \dots[/tex]

Actually, this sequence is the geometric seequence with first term [tex]a_1=-2[/tex] and ratio [tex]r=9.[/tex]

The explicit rule for the nth term of the geometric sequence is

[tex]a_n=a_1\cdot r^{n-1}.[/tex]

Hence,

[tex]a_n=-2\cdot 9^{n-1}.[/tex]