Respuesta :
17 Answer: 205
Step-by-step explanation:
[tex]\{1\dfrac{2}{3}+1\dfrac{5}{6}+2+...+8\dfrac{1}{3}\}\implies a_1=1\dfrac{2}{3},\ d=\dfrac{1}{6}\\\\\\a_n=a_1+d(n-1)\qquad solve\ for\ n\\\\8\dfrac{1}{3}=1\dfrac{2}{3}+\dfrac{1}{6}(n-1)\\\\\\\dfrac{25}{3}=\dfrac{5}{3}+\dfrac{1}{6}n-\dfrac{1}{6}\\\\\\\dfrac{50}{6}=\dfrac{10}{6}+\dfrac{1}{6}n-\dfrac{1}{6}\\\\\\\dfrac{41}{6}=\dfrac{1}{6}n\\\\\\\dfrac{41}{6}\cdot 6=n\\\\41=n[/tex]
[tex]\text{Now use the sum formula:}\\\\S_n=\dfrac{a_1+a_n}{2}\cdot n\\\\\\S_{41}=\dfrac{1\dfrac{2}{3}+8\dfrac{1}{3}}{2}\cdot 41\\\\\\.\quad =\dfrac{10}{2}\cdot 41\\\\\\.\quad =5\cdot 41\\\\.\quad =\large\boxed{205}[/tex]
18 Answer: 1968
Step-by-step explanation:
[tex]a_1=-6,\ d=2,\ n=48, \quad \text{solve for }a_{48}\\\\a_{n}=a_1+d(n-1)\\\\a_{48}=-6+2(48-1)\\\\.\quad =-6+2(47)\\\\.\quad =-6+94\\\\.\quad =88[/tex]
[tex]\text{Now use the sum formula:}\\\\S_n=\dfrac{a_1+a_n}{2}\cdot n\\\\\\S_{48}=\dfrac{-6+88}{2}\cdot 48\\\\\\.\quad =\dfrac{82}{2}\cdot 48\\\\\\.\quad =41\cdot 48\\\\.\quad =\large\boxed{1968}[/tex]
19 Answer: -116
Step-by-step explanation:
[tex]\{3, -2, -7, ...\}\\a_1=3,\ d=-5,\ n=8, \quad \text{solve for }a_{8}\\\\a_{n}=a_1+d(n-1)\\\\a_{8}=3-5(8-1)\\\\.\quad =3-5(7)\\\\.\quad =3-35\\\\.\quad =-32\\\\\text{Now use the sum formula:}\\\\S_8=\dfrac{a_1+a_8}{2}\cdot 8\\\\\\S_{8}=\dfrac{3-32}{2}\cdot 8\\\\\\.\quad =\dfrac{-29}{2}\cdot 8\\\\\\.\quad =-29\cdot 4\\\\.\quad =\large\boxed{-116}[/tex]