Which is equivalent to [tex]\sqrt[4]{9} ^{\frac{1}{2}x }[/tex]

A: [tex]9^{2x}[/tex]
B:[tex]9^{\frac{1}{8}x }[/tex]
C:[tex]\sqrt{9}^{x}[/tex]
D:[tex]\sqrt[6]{9} ^{x}[/tex]



ANSWER IS B: :[tex]9^{\frac{1}{8}x }[/tex]

Respuesta :

For this case we have that by definition of properties of powers and roots, it is fulfilled that:

[tex]\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}[/tex]

So:

[tex]\sqrt [4] {9 ^ {\frac {1} {2} x}} = 9 ^ {\frac {\frac {1} {2}} {4} x} = 9 ^ {\frac {1} {8} x}[/tex]

So, we have to:

[tex]\sqrt [4] {9 ^ {\frac {1} {2} x}} = 9 ^ {\frac {1} {8} x}[/tex]

Answer:

[tex]9 ^ {\frac {1} {8} x}[/tex]

Option B