Respuesta :

Answer:

[tex]\lim_{x\to 3^-} f(x)=-1[/tex]

Step-by-step explanation:

We have a piesewise function composed of three pieces. two line segments and one point.

The first line cuts at point (0,0) and ends at point (3, -1)

If we use these two points we can find the equation of the line.

The slope m is:

[tex]m = \frac{y_2-y_1}{x_2-x_1}\\\\m = \frac{-1 - (0)}{3-0}\\\\m = -\frac{1}{3}[/tex]

So the equation is:

[tex]y = -\frac{1}{3}x + b[/tex]

As the line cuts in (0,0) then [tex]b = 0[/tex] and the equation is:

[tex]y = -\frac{1}{3}x[/tex]

The equation of the second line is:

[tex]y = -4[/tex]

Now we can find f(x) (although it is not necessary to find the equation of f(x) because we have its graph)

[tex]f(x) = -\frac{1}{3}x[/tex]   if  [tex]x<3[/tex];  [tex]f(x)=-4[/tex]   if   [tex]x> 3[/tex];   [tex]f(x)= 7[/tex]   if   [tex]x = 3[/tex].

The limit of f(x) when x tends to 3 from the left  [tex]\lim_{x\to 3^-} f(x)[/tex] is the limit of the function  when x approaches 3 from the left. If x approaches 3 from the left then [tex]x <3[/tex]. If [tex]x <3[/tex] then f(x) is given by the line [tex]y = -\frac{1}{3}x[/tex] . Then the limit is -1  as seen in the graph

Ver imagen luisejr77