Respuesta :

ANSWER

[tex]\tan( \alpha ) + \tan( \beta ) [/tex]

EXPLANATION

The given identity is

[tex] \frac{ \sin( \alpha + \beta ) }{ \cos( \alpha ) \cos( \beta ) } [/tex]

We expand the numerator to get:

[tex] = \frac{ \sin\alpha \cos\beta + \sin\beta \cos \alpha }{ \cos( \alpha ) \cos( \beta ) } [/tex]

Split the numerator to obtain:

[tex] = \frac{ \sin\alpha \cos\beta }{ \cos( \alpha ) \cos( \beta ) } + \frac{ \sin\beta \cos \alpha }{ \cos( \alpha ) \cos( \beta ) } [/tex]

Cancel the common factors:

[tex]= \frac{ \sin\alpha }{ \cos( \alpha ) } + \frac{ \sin\beta }{ \cos( \beta ) } [/tex]

This simplifies to give us;

[tex] = \tan( \alpha ) + \tan( \beta ) [/tex]

The second choice is correct