Respuesta :
Answer:
-10 and -2 are the zeroes
Step-by-step explanation:
Factor: x^2 + 12x + 20
(x + 10)(x+2)
Set each factor to 0 and solve for x
x + 10 = 0 | x = -10
x + 2 = 0 | x = -2
The zeros are the values for x
Answer:
-10 and -2
Step-by-step explanation:
to find Zeros substitute f(x) to 0
[tex] \displaystyle {x}^{2} + 12x + 20 = 0[/tex]
rewrite the middle term as 2x+10x:
[tex] \displaystyle {x}^{2} +2x + 10x+ 20 = 0[/tex]
factor out x:
[tex] \displaystyle x ({x}^{} +2)+ 10x+ 20 = 0[/tex]
factor out 10:
[tex] \displaystyle x ({x}^{} +2)+ 10(x+ 2) = 0[/tex]
group:
[tex] \displaystyle (x + 10)(x+ 2) = 0[/tex]
by Zero product property we obtain:
[tex] \displaystyle \begin{cases} x + 10 = 0\\ x+ 2 = 0\end{cases} [/tex]
cancel 10 from the first equation 2 from the second:
[tex] \displaystyle \begin{cases} x = - 10\\ x = - 2\end{cases} [/tex]
hence, the Zeros of the function are -10 and -2