Respuesta :

Answer:

[tex]h = -3\\k = 3[/tex]

[tex]a^2 = 25\\b^2 = 9[/tex]

[tex]\frac{(x+3)^2}{25} + \frac{(y-3)^2}{9} = 1[/tex]

Step-by-step explanation:

The general equation of an ellipse is as follows:

[tex]\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1[/tex]

Where the point (h, k) is the center of the circle

a is called semi major axis: horizontal distance from the ellipse to its center

b is the semi minor axis: vertical distance from the ellipse to its center.

See the attached image.

There you can notice that

[tex]a = 5\\\\a^2 = 25\\\\b = 3\\\\b^2=9[/tex]

The center is at point (-3, 3)

Thus:

[tex]h = -3\\k = 3[/tex]

Then the equation sought is:

[tex]\frac{(x-(-3))^2}{5^2} + \frac{(y-3)^2}{3^2} = 1[/tex]

Simplify

[tex]\frac{(x+3)^2}{5^2} + \frac{(y-3)^2}{3^2} = 1[/tex]

Ver imagen luisejr77