Respuesta :

ANSWER

[tex]c. \ln( \frac{2 {x}^{3} }{3y}) [/tex]

EXPLANATION

We want to write

[tex] ln(2x) + 2 ln(x) - ln(3y) [/tex]

as a single logarithm.

Use the power rule to rewrite the middle term:

[tex]n \: ln(a) = ln( {a}^{n} ) [/tex]

[tex]ln(2x) + ln( {x}^{2} ) - ln(3y) [/tex]

Use the product rule to obtain:

[tex]ln(a) + ln(b) = ln(ab) [/tex]

[tex]ln(2x \times {x}^{2} )- ln(3y) [/tex]

[tex]ln(2{x}^{3} )- ln(3y)[/tex]

Apply the quotient rule:

[tex] ln(a) - ln(b) = ln( \frac{a}{b})[/tex]

[tex]ln(2{x}^{3} )- ln(3y) =\ln(\frac{2 {x}^{3} }{3y})[/tex]