Respuesta :

Answer:

option C

x = 6

y = 4

z = 1

Step-by-step explanation:

Given in the question a matrix in the row echelon form of the augmented matrix.

[tex]\left[\begin{array}{ccc}1&0&+4=-1\\0&1&-1=+3\\0&0&+1=+1\end{array}\right][/tex]

First Equation

x0 + y0 + z(1) = 1

0 + 0 + z = 1

z = 1

Second Equation

x0 + y(1) + z(-1) = 3

0 + y - z = 3

y -1 = 3

y = 4

Third Equation

x(1) + y0 + z(4) = -1

x + 0 + 4z = -1

x + 4 = -1

x = -5