Respuesta :
Answer:
B
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Rearrange 2x + 3y = 4 into this form
Subtract 2x from both sides
3y = - 2x + 4 ( divide all terms by 3 )
y = - [tex]\frac{2}{3}[/tex] x + [tex]\frac{4}{3}[/tex] ← in slope- intercept form
with slope m = - [tex]\frac{2}{3}[/tex]
Given a line with slope m then the slope of a line perpendicular to it is
[tex]m_{perpendicular}[/tex] = - [tex]\frac{1}{m}[/tex] = - [tex]\frac{1}{-\frac{2}{3} }[/tex] = [tex]\frac{3}{2}[/tex], hence
y = [tex]\frac{3}{2}[/tex] x + c ← is the partial equation of the perpendicular line
To find c substitute (- 2, 15) into the partial equation
15 = - 3 + c ⇒ c = 15 + 3 = 18
y = [tex]\frac{3}{2}[/tex] x + 18 → B
Answer:
B and C are both perpindicular to 2x + 3y = 4.
But B passes (-2, 15).
Hope this helps!!!