Respuesta :

Move the 5 to the other side:

[tex]2\sec(x)=1-5=-4[/tex]

Divide both sides by 2:

[tex]\sec(x) = -2[/tex]

Recall the definition:

[tex]\sec(x)=-2 \iff \dfrac{1}{\cos(x)}=-2[/tex]

Invert both sides

[tex]\cos(x) = -\dfrac{1}{2}[/tex]

This is true when

[tex]x=\pm \dfrac{\pi}{3}[/tex]

If you need both angles to be in [0,2pi], you can recall

[tex]\cos\left(-\dfrac{\pi}{3}\right) = \cos\left(-\dfrac{\pi}{3}+2\pi\right) = \cos\left(\dfrac{5\pi}{3}\right)[/tex]

So, the solutions are

[tex]x=\dfrac{\pi}{3},\quad x=\dfrac{5\pi}{3}[/tex]

Answer:

2pi/3 and 4pi/3

Step-by-step explanation:

this is the answer according to apex