Respuesta :
It A because the two mirror each other so you can simplify them to (3x−5)^2.
Answer:
(A) [tex](3x-5)(3x-5)[/tex]
Step-by-step explanation:
Perfect-square trinomials have this form:
[tex]a^2x^2 \± 2ab + b^2[/tex]
And can be expressed as a squared binomial:
[tex](ax \± b)^2[/tex]
Which is the same as: [tex](ax+b)(ax+b)[/tex] or [tex](ax-b)(ax-b)[/tex]
You can observe that [tex](3x-5)(3x-5)[/tex] (Shown in the option A) matches with the form [tex](ax-b)(ax-b)[/tex], therefore, it will result in a perfect square trinomimal.
You can verify this by applyin Distributive property. Then:
[tex](3x-5)(3x-5)=\\=3^2x^2+(3x)(-5)+(3x)(-5)+5^2\\=9x^2-15x-15x+25\\=9x^2-30x+25[/tex]
The result is a perfect square trinomial.