Respuesta :
Answer:
7500 m/s
Explanation:
Centripetal acceleration = gravity
v² / r = GM / r²
v = √(GM / r)
Given:
G = 6.67×10⁻¹¹ m³/kg/s²
M = 5.98×10²⁴ kg
r = 6.8×10⁵ + 6.357×10⁶ = 7.037×10⁶ m
v = √(6.67×10⁻¹¹ (5.98×10²⁴) / (7.037×10⁶))
v = 7500
The orbital velocity is 7500 m/s.
The orbital velocity is 7500 m/s.
What is orbital velocity ?
Orbital velocity is defined as the minimum velocity a body must maintain to stay in orbit.
Given
h = 6.8 E 5 m = 6.8 * [tex]10^{5}[/tex] m
mass of satellite = 5.6 * [tex]10^{5}[/tex] kg
Earth's mass : m(e) = 5.98 E 24 kg
Earth's radius ; R(e) = 6.357 E 6 m
orbital velocity :v(orbiting ) = [tex]\sqrt{Gm(e) / R(e) + h}[/tex]
R(e) + h = 6.8×10⁵ + 6.357×10⁶ = 7.037×10⁶ m
v = √(6.67×10⁻¹¹ * (5.98×10²⁴)) / (7.037×10⁶))
v = 7500 m/s
The orbital velocity is 7500 m/s.
learn more about orbital velocity
https://brainly.com/question/16040381?referrer=searchResults
#SPJ2