Respuesta :

Answer:

15.8

Step-by-step explanation:

[tex]x \in \mathbb{R}[/tex]

[tex]|5x^2 - 16| + |10x - 2|[/tex]

Once we are working with absolute values, the expression will always be positive, therefore, to get the lowest value for the expression, the lowest value for x should be 0.

[tex]|5(0)^2 - 16| + |10(0) - 2|[/tex]

[tex]|- 16| + |- 2|[/tex]

[tex]16 + 2[/tex]

[tex]18[/tex]

But this is not the right approach and this is not the lowest value. For this question, you may think that

[tex]|5x^2 - 16| + |10x - 2|>0[/tex]

For

[tex]|5x^2 - 16| + |10x - 2|=0, \nexists x \in \math{R}[/tex]

Therefore,

[tex]|5x^2 - 16| + |10x - 2|>0[/tex]

Solving that

[tex]$|5x^2-16| \implies \left|5\left(-\frac{4}{\sqrt{5}}\right)^2-16\right| = 0$[/tex]

[tex]$|10x - 2| \implies \left|10\left(\frac{1}{5} \right) - 2\right| =0$[/tex]

Once it is true for all values of x in the Real set, it means the intervals,

[tex]$x\le -\frac{4}{\sqrt{5}}$[/tex]

[tex]$-\frac{4}{\sqrt{5}}<x<\frac{1}{5}$[/tex]

[tex]$\frac{1}{5}\le x<\frac{4}{\sqrt{5}}$[/tex]

[tex]$x\ge \frac{4}{\sqrt{5}}$[/tex]

Are true and equal to [tex]x\in(-\infty, \infty)[/tex]

The lowest value for [tex]x[/tex] will be

[tex]$\frac{4}{\sqrt{5} } \text{ or } \frac{1}{5} $[/tex]

If you replace one of these values for [tex]x[/tex], you will find that [tex]$x=\frac{1}{5} $[/tex] is the value that will give the lowest value for the expression.

[tex]$\left|5\left(\frac{1}{5}\right)^2-16\right| + \left|10\left(\frac{1}{5} \right) - 2\right| = 15.8$[/tex]