Two long, parallel, current-carrying wires lie in an xy-plane. The first wire lies on the line y = 0.330 m and carries a current of 26.5 A in the +x direction. The second wire lies along the x-axis. The wires exert attractive forces on each other, and the force per unit length on each wire is 300 µN/m. What is the y-value (in m) of the line in the xy-plane where the total magnetic field is zero?

Respuesta :

Answer:

The value of y is 0.136 m

Explanation:

Given that,

Y = 0.330 m

Current I₁= 26.5 A

Force per unit length [tex]\dfrac{F}{l}= 300\ \mu N/m[/tex]

We need to calculate the current of second wire

Using formula of magnetic force

[tex]\dfrac{F}{l}=\dfrac{\mu I_{1}I_{2}}{2\pi d}[/tex]

[tex]300\times10^{-6}=\dfrac{4\pi\times10^{-7}\times26.5\timesI_{2}}{2\times\pi\times0.330}[/tex]

[tex]I_{2}=\dfrac{300\times10^{-6}\times2\times\pi\times0.330}{4\pi\times10^{-7}\times26.5}[/tex]

[tex]I_{2}=18.68\ A[/tex]

We need to calculate the value of y where the total magnetic field is zero

Using formula of magnetic field

[tex]\dfrac{\mu_{0}I_{2}}{2\pi y}=\dfrac{\mu_{0}I_{1}}{2\pi(0.330-y)}[/tex]

Put the value in the equation

[tex][tex]\dfrac{4\pi\times10^{-7}\times18.68}{2\pi y}=\dfrac{4\pi\times10^{-7}\times26.5}{2\pi(0.330-y)}[/tex]

[tex]\dfrac{0.330-y}{y}=\dfrac{26.5}{18.68}[/tex]

[tex]\dfrac{0.330-y}{y}=1.4186[/tex]

[tex]0.330=1.4186y+y[/tex]

[tex]2.4186y=0.330[/tex]

[tex]y=\dfrac{0.330}{2.4186}[/tex]

[tex]y=0.136\ m[/tex]

Hence, The value of y is 0.136 m.