Respuesta :

Answer:

Zeros:

[tex]x_1=-1+\sqrt{2}[/tex]

[tex]x_2=-1-\sqrt{2}[/tex]

Interception with y-axis

[tex]y=- 1[/tex]

Vertex:

(-1, -2)

Step-by-step explanation:

We have the following quadratic function

[tex]f(x) = x^2 + 2x - 1[/tex]

To find the zeros of the function, make [tex]f(x) = 0[/tex] and solve for the variable x

[tex]x^2 + 2x - 1=0[/tex]

We must factor the expression. Then we use the quadratic formula:

For a function of the form [tex]ax ^ 2 + bx + c = 0[/tex] the quadratic formula is:

[tex]x=\frac{-b\±\sqrt{b^2-4ac}}{2a}[/tex]

In this case note that:

[tex]a=1\\b=2\\c=-1[/tex]

Then:

[tex]x=\frac{-2\±\sqrt{2^2-4(1)(-1)}}{2}[/tex]

[tex]x=\frac{-2\±\sqrt{8}}{2}[/tex]

[tex]x=\frac{-2\±2\sqrt{2}}{2}[/tex]

[tex]x_1=-1+\sqrt{2}[/tex]

[tex]x_2=-1-\sqrt{2}[/tex]

We know that the vertex of a quadratic function is at the point:

[tex](-\frac{b}{2a}, f(-\frac{b}{2a}))[/tex]

Then:

[tex]x=-\frac{2}{2*1}=-1[/tex]

[tex]y=f(-1) = (-1)^2+2(-1) -1 = -2[/tex]

The vertex is: (-1, -2)

The intersection with the y-axis we find it doing [tex]x = 0[/tex] and solving for y

[tex]y=f(0) = 0^2 + 2*0 - 1[/tex]

[tex]y=- 1[/tex]

Look at the attached image.

Ver imagen luisejr77