Respuesta :

Answer:

(h o g)(5) = 20

Step-by-step explanation:

(h o g)(5) = h(g(5)) This is two ways of writing the expression

g(x) = [tex]\sqrt{5x}[/tex]  h(x) = 3x + 5 g(x) and h(x) are your "plug-ins" for the expression

g(5) = [tex]\sqrt{5(5)}[/tex] = [tex]\sqrt{25}[/tex] = 5 This is how you would solve for plugging in 5 to g(x)

Whatever you get for g(5) {the answer to it} is what you will be plugging into h(x); x being equal to g(5).

h(5) = 3(5) + 5 = 15 + 5 = 20