Given the following information, answer these questions. P4(g) + 5 O2(g) → P4O10(s) ΔG⁰298 = −2748 kJ/mol 2 H2(g) + O2(g) → 2 H2O(l) ΔG⁰298 = −474.2 kJ/mol P4O10(s) + 6 H2O(l) → 4 H3PO4(l) ΔG⁰298 = −349 kJ/mol (a) Determine the standard free energy of formation, ΔG⁰f (in kJ/mol), for phosphoric acid from this information. (Assume that ΔG⁰298 for all elemental substances is negligible.)

Respuesta :

Explanation:

The given reactions are  as follows.

  [tex]P_{4}(g) + 5O_{2}(g) \rightarrow P_{4}O_{10}(s)[/tex]      [tex]\Delta G^{o}298[/tex]  = -2748 kJ/mol ............ (1)

 [tex]2H_{2}(g) + O_{2}(g) \rightarrow 2H_{2}O(l)[/tex]      [tex]\Delta G^{o}298[/tex] = -474.2 kJ/mol ............ (2)

  [tex]P_{4}O_{10}(s) + 6H_{2}O(l) \rightarrow 4H_{3}PO_{4}(l)[/tex]    [tex]\Delta G^{o} 298[/tex] = -349 kJ/mol ............. (3)

It is known that heat of formation for the reactions where one mole of a compound is made from its constituent particles means gibbs free energy.

The equation is  as follows.

           [tex]\frac{1}{4}P_{4}(g) + 2O_{2}(g) + \frac{3}{2}H2(g) \rightarrow H_{3}PO_{4}(l)[/tex]          [tex]\Delta G^{o} 298[/tex] = ?

So, from the equations (1), (2) and (3) reactions we get the following.

          [tex][1]x \frac{1}{4} + [2] x\frac{3}{4} + [3]x \frac{1}{4}[/tex]

    [tex]\frac{1}{4}P_{4}(g) + \frac{5}{4}O_{2}(g) \rightarrow \frac{1}{4}P_{4}O_{10}(s)[/tex]  ......... (4)

     [tex]\frac{3}{2}H_{2}(g) + \frac{3}{4}O_{2}(g) \rightarrow \frac{3}{2}H_{2}O(l)[/tex]  ............. (5)

     [tex]\frac{1}{4}P_{4}O_{10}(s) + \frac{3}{2}H2O(l) \rightarrow H_{3}PO_{4}(l)[/tex]  ............ (6)

On adding equation (4), (5) and (6) by cancelling the common species we get the following.

             [tex]\frac{1}{4}P_{4}(g) + 2O_{2}(g) + \frac{3}{2}H_{2}(g) \rightarrow H_{3}PO_{4}(l)[/tex]

Now, calculate the value of [tex]\Delta G^{o} 298[/tex] by putting the given values into the above equation as follows.

      [tex]\Delta G^{o}_{rxn} 298[/tex] = [tex][-2748] \times \frac{1}{4} + [-474.2] \times \frac{3}{4} + [-349] \times \frac{1}{4}[/tex]

         = (-687 -355.65 -87.25) kJ/mol

         = -1129.9 kJ/mol

Thus, we can conclude that value of standard free energy of formation for the given reaction is -1129.9 kJ/mol.