The two common chlorides of phosphorus, PCl3, and PCl5, both important for the production of the other phosphorus compounds, coexist in equilibrium through the reactionPCl3(g) + Cl2(g) = PCl5(g)At 250 ᵒC , an equilibrium mixture in a 25.0 L flask contains 0.105 g PCl5, 0.220 g PCl3 and 2.12 g of Cl2. What are the values of(a) Kc(b) Kp for this reaction at 250 ᵒC ?

Respuesta :

Answer:

(a) Kc = 264

(b) Kp = 6.15

Explanation:

(a) To calculate Kc we need the molar concentrations of each substance.

[tex]M=\frac{molesofsolute}{litresofsolution} =\frac{massofsolute}{molarmassofsolute \times litresofsolution}[/tex]

[tex][PCl_{3}]=\frac{0.220g}{137.5g/mol \times 25.0L } =6.40 \times 10^{-5} M[/tex]

[tex][Cl_{2}]=\frac{2.12g}{71.0g/mol \times 25.0L } =1.19 \times 10^{-3}M[/tex]

[tex][PCl_{5}]=\frac{0.105g}{208.5g/mol \times 25.0L } =2.01 \times 10^{-5} M[/tex]

Then, we replace these concentrations in the Kc expression.

[tex]Kc=\frac{[PCl_{5}]}{[PCl_{3}]\times [Cl_{2}] } =\frac{2.01 \times 10^{-5}  }{6.40 \times 10^{-5} \times 1.19 \times 10^{-3}  } =264[/tex]

(b) To find out Kp we can use the following expression:

[tex]Kp = Kc.(R.T)^{\Delta n(g) }[/tex]

where,

R is the ideal gas constant (0.08206 atm .L /mol . K)

T is the absolute temperature (250°C + 273.15 = 523.15 K)

Δn is gaseous moles of products - gaseous moles of reactants (1 - 2 = -1)

If we replace with the values we have:

[tex]Kp = Kc.(R.T)^{\Delta n(g) }=264 \times (0.08206 \times 523.15)^{-1} =6.15[/tex]