Respuesta :
Answer:
The force exerted on the top of the chain is 7.4316 N.
Explanation:
Given that,
Mass of link = 0.117 kg
Number of links = 6
Acceleration = 2.13 m/s²
We need to calculate the force on first link due to second link
Using formula of force
[tex]F=m(g+a)[/tex]
Put the value into the formula
[tex]F_{1}=0.117(9.81+2.13)[/tex]
[tex]F_{1}=1.3969\ N[/tex]
The force on second link due to third link
[tex]F_{2}=m(g+a)F_{1}[/tex]
Put the value into the formula
[tex]F_{2}=0.117(9.81+2.13)\times1.3969[/tex]
[tex]F_{2}=1.9514\ N[/tex]
The force on third link due to four link
[tex]F_{3}=m(g+a)F_{2}[/tex]
Put the value into the formula
[tex]F_{3}=0.117(9.81+2.13)\times1.9514[/tex]
[tex]F_{3}=2.7260\ N[/tex]
The force on fourth link due to five link
[tex]F_{4}=m(g+a)F_{3}[/tex]
Put the value into the formula
[tex]F_{4}=0.117(9.81+2.13)\times2.7260[/tex]
[tex]F_{4}=3.8081\ N[/tex]
The force on fifth link due to six link
[tex]F_{5}=m(g+a)F_{4}[/tex]
Put the value into the formula
[tex]F_{5}=0.117(9.81+2.13)\times3.8081[/tex]
[tex]F_{5}=5.3198\ N[/tex]
We need to calculate the force exerted on the top of the chain
[tex]F_{6}=m(g+a)F_{5}[/tex]
Put the value into the formula
[tex]F_{6}=0.117(9.81+2.13)\times5.3198[/tex]
[tex]F_{6}=7.4316\ N[/tex]
Hence, The force exerted on the top of the chain is 7.4316 N.