A long rod of 60-mm diameter and thermophysical properties rho= 8000 kg/m3, c= 500 J/kg·K, and k= 50 W/m·K is initially at a uniform temperature and is heated in a forced convection furnace maintained at 750 K. The convection coefficient is estimated to be 1000 W/m2· K. What is the centerline temperature of the rod when the surface temperature is 550 K?

Respuesta :

Answer:

Tc =    = 424.85 K

Explanation:

Data given:

D = 60 mm = 0.06 m

[tex]\rho = 8000 kg/m^3[/tex]

k = 50 w/m . k

c = 500 j/kg.k

[tex]h_{\infty} = 1000 w/m^2[/tex]

[tex]t_{\infity} = 750 k[/tex]

[tex]t_w = 500 K[/tex]

[tex]surface area = As = \pi dL [/tex]

[tex]\frac{As}{L} = \pi D = \pi \timeS 0.06[/tex]

HEAT FLOW Q  is

[tex]Q = h_{\infty} As (T_[\infty} - Tw)[/tex]

 [tex] = 1000 \pi\times 0.06 (750-500)[/tex]

  = 47123.88 w per unit length of rod

volumetric heat rate

[tex]q = \frac{Q}{LAs}[/tex]

  [tex]= \frac{47123.88}{\frac{\pi}{4} D^2 \times 1}[/tex]

[tex]q = 1.66\times 10^{7} w/m^3[/tex]

[tex]Tc = \frac{- qR^2}{4K} + Tw[/tex]

[tex]= \frac{ - 1.67\times 10^7 \times (\frac{0.06}{2})^2}{4\times 56} +  500[/tex]

   = 424.85 K