Respuesta :

Pressure of the ideal gas=505.7kPa

Given:

No of moles=0.907mole

Temperature of the gas=[tex]12^{\circ} \mathrm{C}[/tex]

Volume of the gas=4.25L

To find:

Pressure of the gas

Step by Step Explanation:

Solution:

According to the ideal gas equation

[tex]P V=n R T[/tex] and from this pressure is derived as

[tex]P=\frac{n R T}{V}[/tex]

Where P=Pressure of the gas

V=Volume of the gas=4.25L

n=No of the moles=0.907mole

R=Gas constant=8.314[tex]J / m o l^{-1} K^{-1}[/tex]

T=Temperature of the gas=[tex]12^{\circ} \mathrm{C}[/tex] =273+12=285K

Substitute these known values in the above equation we get

[tex]P=\frac{0.907 \times 8.314 \times 285}{4.25}[/tex]

[tex]P=\frac{2149.13}{4.25}[/tex]

P=505.7kPa

Result:

Thus the pressure of the ideal gas is 505.7kPa