An iron-carbon alloy initially containing 0.286 wt% C is exposed to an oxygen-rich and virtually carbon-free atmosphere at 1200°C. Under these circumstances the carbon diffuses from the alloy and reacts at the surface with the oxygen in the atmosphere; that is, the carbon concentration at the surface position is maintained essentially at 0.0 wt% C. At what position will the carbon concentration be 0.215 wt% after a 7 h treatment? The value of D at 1200°C is 7.5 × 10-11 m2/s.

z erf(z) z erf(z) z erf(z)
0.00 0.0000 0.55 0.5633 1.3 0.9340
0.025 0.0282 0.60 0.6039 1.4 0.9523
0.05 0.0564 0.65 0.6420 1.5 0.9661
0.10 0.1125 0.70 0.6778 1.6 0.9763
0.15 0.1680 0.75 0.7112 1.7 0.9838
0.20 0.2227 0.80 0.7421 1.8 0.9891
0.25 0.2763 0.85 0.7707 1.9 0.9928
0.30 0.3286 0.90 0.7970 2.0 0.9953
0.35 0.3794 0.95 0.8209 2.2 0.9981
0.40 0.4284 1.0 0.8427 2.4 0.9993
0.45 0.4755 1.1 0.8802 2.6 0.9998
0.50 0.5205 1.2 0.9103 2.8 0.9999

Respuesta :

Answer:

Explanation:

Given data:

initial construction co = 0.286 wt %

concentration at surface position cs = 0 wt %

carbon concentration cx = 0.215 wt%

time = 7 hr

[tex]D =  7.5 \times 10^{-11} m^2/s[/tex]

for 0.225% carbon concentration following formula is used

[tex]\frac{cx -co}{cs -co} = 1 - erf(\frac{x}{2\sqrt{DT}})[/tex]

where, erf stand for error function

[tex]\frac{cx -co}{cs -co} = \frac{0.215 -0.286}{0 -0.286} =0.248[/tex]

[tex]0.248 = 1 - erf(\frac{x}{2\sqrt{DT}})[/tex]

[tex]erf(\frac{x}{2\sqrt{DT}}) = 1 - 0.248[/tex]

[tex]erf(\frac{x}{2\sqrt{DT}}) = 0.751[/tex]

from the table erf(Z) value = 0.751 lie between (z) = 0.80 and z = 0.85 so by inteerpolation we have z = 0.815

from given table

[tex]\frac{x}{2\sqrt{DT}} = 0.815[/tex]

[tex]x = 2\times 0.815 \times \sqrt{7.5 \times 10^{-11}\times (7\times 3600)[/tex]

[tex]x = 2.39\times 10^{-3} m[/tex]

x = 0.002395 mm