Respuesta :
Explanation:
The given data is as follows.
T = 298 K, [tex]\Delta H^{o}[/tex] = -5645 kJ/mol
[tex]\Delta G^{o}[/tex] = -5798 kJ/mol
Relation between [tex]\Delta H[/tex] and [tex]\Delta G[/tex] are as follows.
[tex]\Delta G^{o}[/tex] = [tex]\Delta H^{o} - T \Delta S^{o}[/tex]
-5798 kJ/mol = -5645 kJ/mol - [tex]298 \times \Delta S^{o}[/tex]
-153 kJ/mol = -[tex]298 \times \Delta S^{o}[/tex]
[tex]\Delta S^{o}[/tex] = 0.513 kJ/mol K
Now, temperature is [tex]37^{o}C[/tex] = (37 + 273) K = 310 K
Since, [tex]\Delta G[/tex] = [tex]\Delta H^{o} - T \Delta S^{o}[/tex]
= [tex]-5645 kJ/mol - 310 K \times 0.513 kJ/mol K[/tex]
= (-5645 kJ/mol - 159.03 kJ/mol)
= -5804.03 kJ/mol
As, change in Gibb's free energy = maximum non-expansion work
[tex]\Delta G = \Delta G_{310 K} - \Delta G_{298 K}[/tex]
= -5804.03 kJ/mol - (-5798 kJ/mol)
= -6.03 kJ/mol
Therefore, we can conclude that the additional non-expansion work is -6.03 kJ/mol.