The uniform slender bar AB has a mass of 6.4 kg and swings in a vertical plane about the pivot at A. If θ˙ = 2.7 rad/s when θ = 24°, compute the magnitude of the force supported by the pin at A at that instant.

Respuesta :

Answer:

F=√[(1.5(14.58L+11.96))² + (3.2(2.97L - 157.03) + 62.72)²]

Explanation:

Given data,

The mass of the bar AB, m = 6.4 kg

The angular velocity of the bar,  θ˙ = 2.7 rad/s

The angle of the bar at A, θ = 24°

Let the length of the bar be, L = l

The angular moment at point A is,

                        ∑ Mₐ = Iα

Where,     Mₐ - the moment about A

                 α  - angular acceleration

                 I - moment of inertia of the rod AB

                       [tex]-mg(\frac{lcos\theta}{2})=\frac{1}{3}(ml^{2})\alpha[/tex]

                        [tex]\alpha=\frac{-3gcos\theta}{2l}[/tex]

Let G be the center of gravity of the bar AB

The position vector at A with respect to the origin at G is,

                          [tex]\vec{r_{G}}=[\frac{lcos\theta}{2}\hat{i}-\frac{lcos\theta}{2}\hat{j}][/tex]

The acceleration at the center of the bar

                          [tex]\vec{a_{G}}=\vec{a_{a}}+\vec{\alpha}X\vec{r_{G}}-\omega^{2}\vec{r_{G}}[/tex]

Since the point A is fixed, acceleration is 0

The acceleration with respect to the coordinate axes is,

                         [tex](\vec{a_{G}})_{x}\hat{i}+(\vec{a_{G}})_{y}\hat{j}=0+(\frac{-3gcos\theta}{2l})\hat{k}\times[\frac{lcos\theta}{2}\hat{i}-\frac{lcos\theta}{2}\hat{j}]-\omega^{2}[\frac{lcos\theta}{2}\hat{i}-\frac{lcos\theta}{2}\hat{j}][/tex]

[tex](\vec{a_{G}})_{x}\hat{i}+(\vec{a_{G}})_{y}\hat{j}=[-\frac{cos\theta(2l\omega^{2}+3gsin\theta)}{4}\hat{i}+(\frac{2l\omega^{2}sin\theta-3gcos^{2}\theta}{4})\hat{j}][/tex]

Comparing the coefficients of i

[tex]=-\frac{cos\theta(2l\omega^{2}+3gsin\theta)}{4}[/tex]

Comparing coefficients of j

[tex](\vec{a_{G}})_{y}=\frac{2l\omega^{2}sin\theta-3gcos^{2}\theta}{4}[/tex]

Net force on x direction

[tex]F_{x}=(\vec{a_{G}})_{x}[/tex]

substituting the values

[tex]F_{x}[/tex]=1.5(14.58L+11.96)

Similarly net force on y direction

[tex]F_{y}=(\vec{a_{G}})_{y}+mg[/tex]

               = 3.2(2.97L - 157.03) + 62.72

Where L is the length of the bar AB

Therefore the net force,

[tex]F=\sqrt{F_{x}^{2}+F_{y}^{2}}[/tex]

F=√[(1.5(14.58L+11.96))² + (3.2(2.97L - 157.03) + 62.72)²]

Substituting the value of L gives the force at pin A