Respuesta :

Answer:

The missing length is 2x+5

Step-by-step explanation:

Given equation of volume of cuboid is V= [tex]2x^{3} +17x^{2} +46x+40[/tex]

Figure show that

Length of cuboid is ?

Width of cuboid is (x+4)

Height of cuboid is (x+2)

The volume of cuboid is given by

V=Length x Width x Height

Let Length be (bx+a)

The volume of cuboid will be

[tex]V=(bx+a)(x+4)(x+2)[/tex]

[tex]V=(bx+a)[x^{2}+4x+2x+8 ][/tex]

[tex]V=bx[x^{2}+6x+8]+a[x^{2}+6x+8][/tex]

[tex]V=[bx^{3}+6bx^{2}+8bx]+[ax^{2}+6ax+8a][/tex]

[tex]V=[bx^{3}+(6b+a)x^{2}+(8b+6a)x+8a][/tex]

On comparing coefficient with given equation of volume

We get,

b=2 and 8a=40

Therefore, the value of a is 5 and b is 2

Thus, The missing length is bx+a=2x+5